Inhibitors of Glutamate Dehydrogenase Block Sodium-Dependent Glutamate Uptake in Rat Brain Membranes
نویسندگان
چکیده
We recently found evidence for anatomic and physical linkages between the astroglial Na(+)-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1) and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH) inhibitor, epigallocatechin-monogallate (EGCG), inhibits both glutamate oxidation and Na(+)-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na(+)-dependent l-[(3)H]-glutamate (Glu) uptake in crude membranes (P2) prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited l-[(3)H]-Glu uptake in cortical membranes with an IC50 value of 230 μM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP) and bithionol (BTH). Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the V max for glutamate uptake without changing the K m, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na(+)-dependent transport of d-[(3)H]-aspartate (Asp), a non-metabolizable transporter substrate, and [(3)H]-γ-aminobutyric acid (GABA). In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2) is likely mediated by GLAST (EAAT1). Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either l-[(3)H]-Glu or d-[(3)H]-Asp, but they all inhibited [(3)H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.
منابع مشابه
Molecular mechanisms of cystine transport.
The transport of L-cystine into cells of the mammalian brain is an essential step in the supply of cysteine for synthesis of the antioxidant glutathione. Uptake of L-cystine in rat brain synaptosomes occurs by three mechanisms that are distinguishable on the basis of their ionic dependence, kinetics of transport and specificity of inhibitors. Almost 90% of L-cystine transport is by a low-affini...
متن کاملAutoradiographic visualization of group III metabotropic glutamate receptors using [3H]-L-2-amino-4-phosphonobutyrate.
1. In vitro receptor autoradiography using [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding to sections of rat brain has been characterized and shown to most likely represent labelling of group III metabotropic glutamate receptors. 2. Specific [3H]-L-AP4 binding to rat brain sections was observed at high densities in the molecular layer of the cerebellar cortex and the outer layer of the...
متن کاملExcitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures.
In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concen...
متن کاملGlutamate, aspartate, and gamma-aminobutyrate transport by membrane vesicles prepared from rat brain.
To prepare membrane vesicles, nerve terminal preparations (synaptosomes) isolated from rat cerebral cortex were first subjected to hypotonic lysis. After collecting the membranes contained in this fraction by centrifugation, membrane vesicles were then reconstituted during incubation in a potassium salt solution at 37°C. The transport of glutamate, aspartate, or y-aminobutyrie acid (GABA) was m...
متن کاملSNARE protein-dependent glutamate release from astrocytes.
We investigated the cellular mechanisms underlying the Ca(2+)-dependent release of glutamate from cultured astrocytes isolated from rat hippocampus. Using Ca(2+) imaging and electrophysiological techniques, we analyzed the effects of disrupting astrocytic vesicle proteins on the ability of astrocytes to release glutamate and to cause neuronal electrophysiological responses, i.e., a slow inward ...
متن کامل